ALU START

ALUMINIUM SYSTEM FOR THE CONNECTION OF BUILDINGS TO THE GROUND

CE MARK ACCORDING TO ETA

The profile is capable of transferring shear, tensile and compressive forces into the foundation. The strengths are tested, calculated and certified according to ETA-20/0835.

ELEVATION FROM THE FOUNDATION

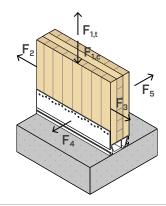
The profile allows to eliminates contact between the timber panels (CLT or TIMBER FRAME) and the concrete substructure. Excellent durability of the building connection to the ground.

SUPPORT SURFACE LEVELLING

Thanks to the special assembly templates, the supporting surface level is easy to adjust. The "levelling" of the entire building is simple, precise and fast.

USA, Canada and more design values available online.

SERVICE CLASS



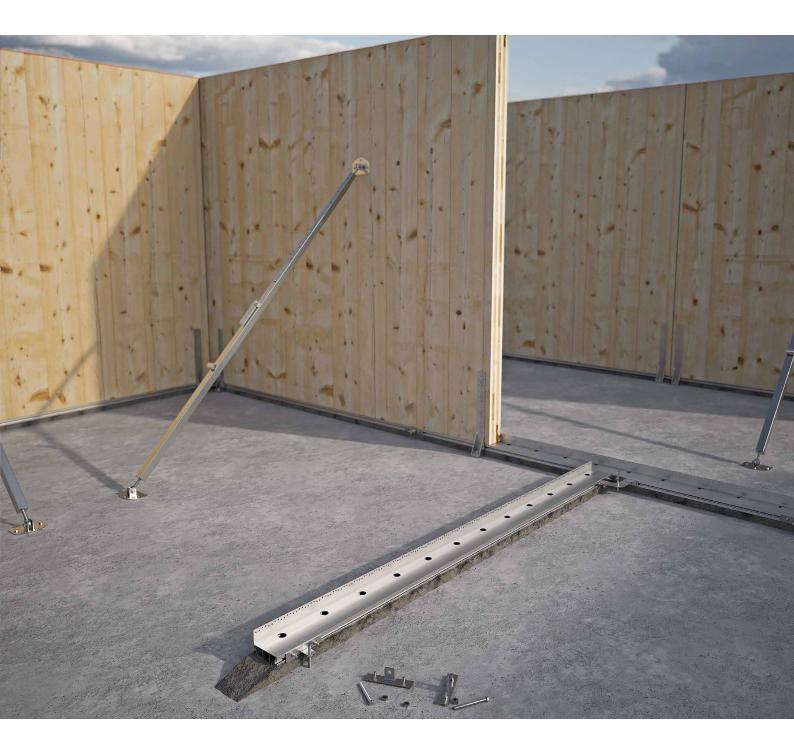
MATERIAL

EN AW-6060 aluminium alloy

EXTERNAL LOADS

VIDEO

Scan the QR Code and watch the video on our YouTube channel



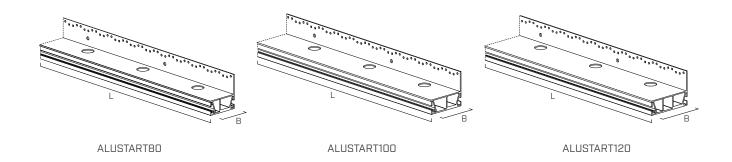

FIELDS OF USE

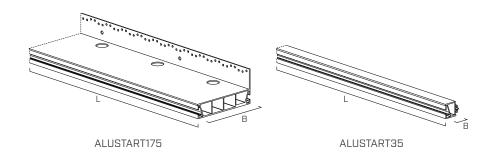
Ground attachment system for timber walls. The aluminium profiles are positioned and levelled before the walls are installed. Fastening with LBA nails, LBS screws and concrete anchors.

Can be applied to:

- TIMBER FRAME walls
- CLT and LVL panel walls

DURABILITY


Thanks to the elevation from the foundation and the aluminium material, the building base is protected against capillary damp. The ground connection provides durability and health to the structure.


CERTIFIED STRENGTH

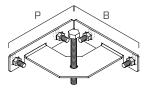
Thanks to the side flange, the profile can be fastened to the timber wall by means of nails or screws which guarantee excellent strength in all directions certified by CE marking according to ETA.

■ CODES AND DIMENSIONS

ALU START

CODE	B [mm]	L [mm]	B [in]	L [in]		pcs
ALUSTART80	80	2400	3 1/8	94 1/2	•	1
ALUSTART100	100	2400	4	94 1/2	•	1
ALUSTART120	120	2400	4 3/4	94 1/2	•	1
ALUSTART175	175	2400	6 7/8	94 1/2	•	1
ALUSTART35 *	35	2400	1 3/8	94 1/2	•	1

^{*} Lateral extension for ALUSTART profiles.


ASSEMBLY ACCESSORIES - JIG START TEMPLATES

CODE	description	B [mm] <i>[in]</i>	P [mm] <i>[in]</i>	pcs
JIGSTARTI	levelling template for linear joint	160 <i>6 1/4</i>	-	25
JIGSTARTL	levelling template for angle joint	160 <i>6 1/4</i>	160 <i>6 1/4</i>	10

The templates are supplied complete with M12 bolt for height adjustment, ALUSBOLT bolts and MUT93410 nuts.

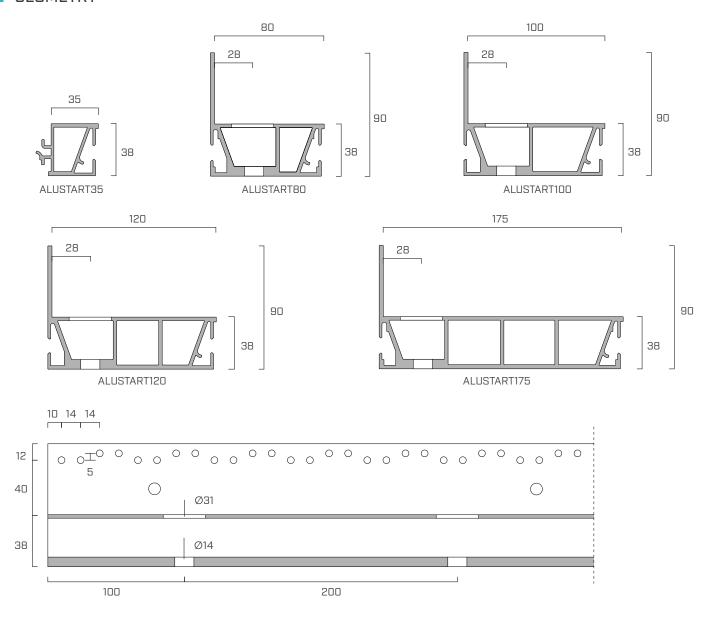
JIGSTARTL

COMPLEMENTARY PRODUCTS

CODE	description	pcs
ALUSBOLT	hammer head bolt for template fastening	100
MUT93410	hammer bolt nut	500
ALUSPIN	ISO 8752 sping pins for ALUSTART35 assembly	50

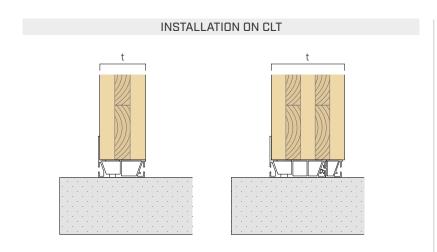
ALUSBOLT and ALUSPIN can be ordered separately from the templates as spare parts.

ALUSBOLT


MUT93410

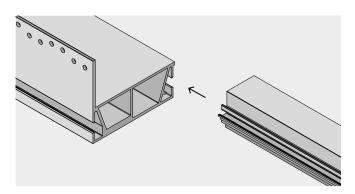
FASTENERS

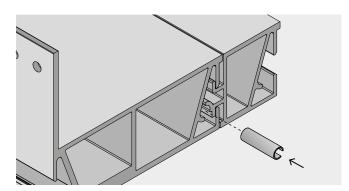
type	description		d	support	page
			[mm]		
LBA	high bond nail		4	27777	570
LBS	round head screw	(] M111111111	5	27777	571
SKR	screw-in anchor		12		528
AB1	CE1 expansion anchor		M12		536
VIN-FIX	vinyl ester chemical anchor		M12		545
HYB-FIX	hybrid chemical anchor		M12		552


GEOMETRY

CODE	В	Н	L	n _v Ø5	n _H Ø14
	[mm]	[mm]	[mm]	[pcs]	[pcs]
ALUSTART80	80	90	2400	171	12
ALUSTART100	100	90	2400	171	12
ALUSTART120	120	90	2400	171	12
ALUSTART175	175	90	2400	171	12
ALUSTART35	35	38	2400	-	-

INSTALLATION


ALU START is an extruded aluminium profile designed to house the walls and to solve the foundation-wall node in timber. The profile is certified to withstand all the stresses typical for a timber wall, i.e. F_1 , $F_{2/3}$, F_4 and F_5 . ALU START profiles are designed to fit both CLT and Timber Frame walls. The use of the lateral extension ALUSTART35 allows its use with CLT and Timber Frame walls having greater thickness.



INSTALLATION ON TIMBER FRAME t b c

- a. bracing sheet
- b. strut
- c. beam

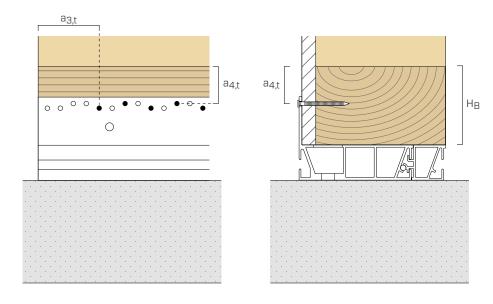
The ALUSTART35 side extension is easily inserted into the ALU START profiles. The compound profile is then stopped in position by two ALUSPIN pins to be inserted at the ends. It is possible to install up to two ALUSTART35 profiles on a profile with a nailed flange.

PROFILE SELECTION

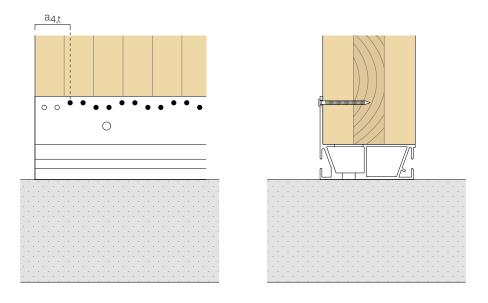
profile	reference width	recommended thickness t	
		minimum	maximum
	[mm]	[mm]	[mm]
ALUSTART80	80	-	95
ALUSTART100	100	90	115
ALUSTART120	120	115	135
ALUSTART100 + ALUSTART35	135	135	155
ALUSTART120 + ALUSTART35	155	155	175
ALUSTART175	175	155	195
ALUSTART120 + 2x ALUSTART35	190	180	215
ALUSTART175 + ALUSTART35	210	195	235
ALUSTART175 + 2x ALUSTART35	245	235	270

INSTALLATION

NAILING

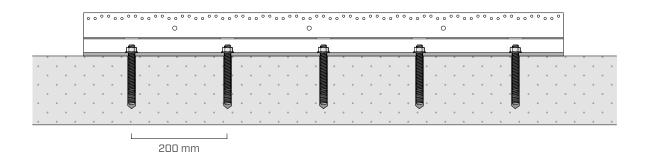

ALU START profiles can be used for different building systems (CLT / Timber Frame). Depending on the construction technology, different nailings can be used in accordance with the minimum distances.

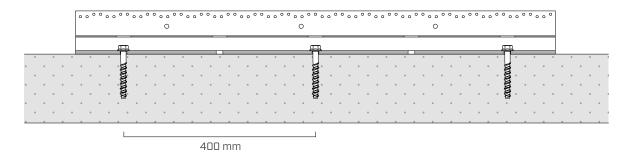
MINIMUM DISTANCES


TIMBER minimum distances		nails LBA Ø4	screws LBS Ø5
	a _{4,t} [mm]	≥ 28	-
C/GL	H _B [mm]	≥ 73	-
	a _{3,t} [mm]	≥ 60	-
CLT	a 4,t [mm]	≥ 28	≥ 30

- C/GL: minimum distances for solid timber or glulam consistent with EN 1995-1-1 according to ETA considering a timber density $\rho_k \le 420 \text{ kg/m}^3$.
- CLT: minimum distances for Cross Laminated Timber according to ÖNORM EN 1995-1-1 (Annex K) for nails and ETA-11/0030 for screws.

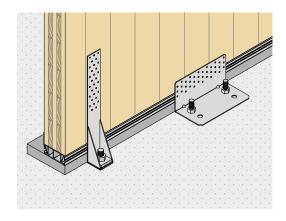
SOLID TIMBER (C) OR GLULAM (GL)



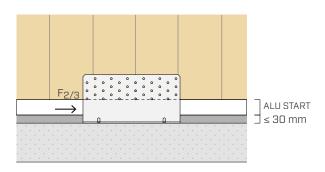

CLT

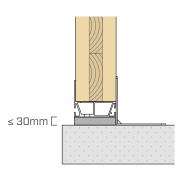
■ INSTALLATION | CONCRETE

The ALU START profiles must be fastened on concrete with a number of anchors suitable for the design loads. It is possible to arrange the anchors in all the holes, or choose larger installation spacing.

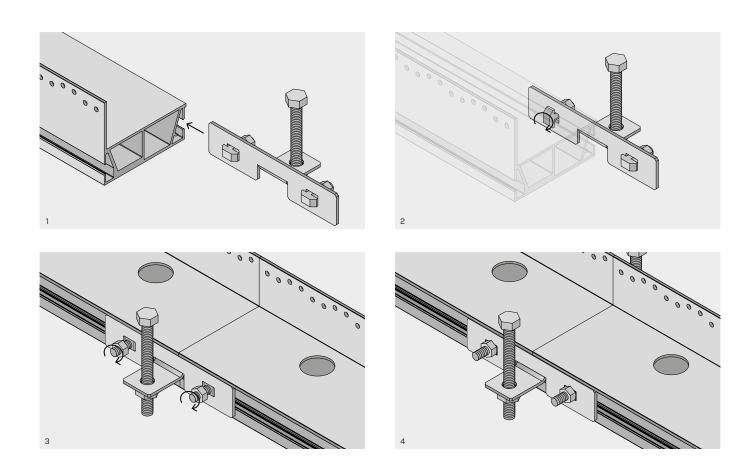


More details on how to install the profiles can be found in the "POSITIONING" section.

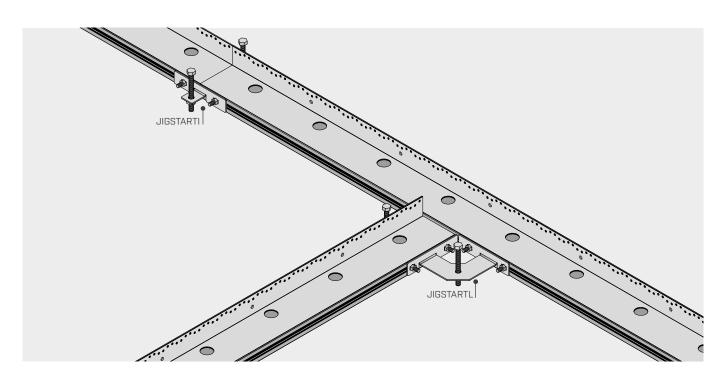

ADDITIONAL CONNECTION SYSTEMS


The ALU START geometry allows using additional connection systems such as TITAN TCN and WHT, even with a grout between the profile and the foundation.

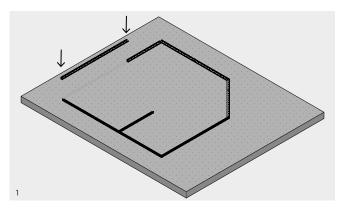
Certified partial nailings are available for TITAN TCN installation which allow laying bedding grout with a thickness up to 30 mm.

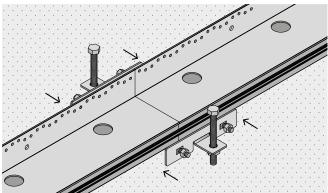

EXAMPLE OF INSTALLATION WITH TITAN TCN240

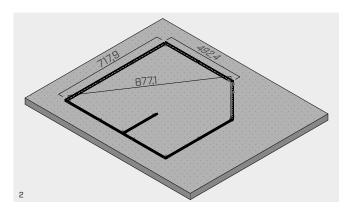
POSITIONING

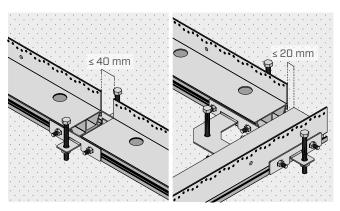

Assembly includes the use of special JIG START templates for the height levelling of the profiles, for the linear joint and for creating 90° angles.

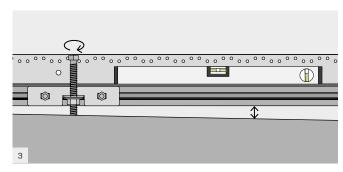
JIGSTARTI templates can connect two consecutive profiles and must be positioned on both sides of ALU START, without positioning constraints along the development.

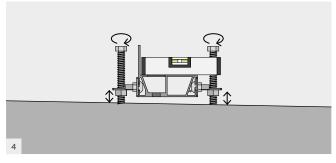

The 90° angle bracket connection is carried out through the JIGSTARTL jigs.

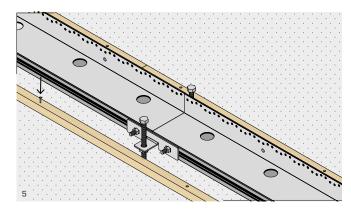

On each template there is a hexagonal head bolt, which allows the height adjustment of the aluminium profiles.

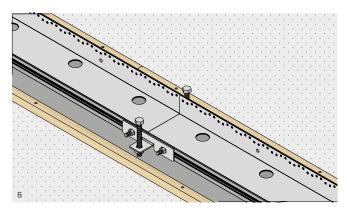

MOUNTING

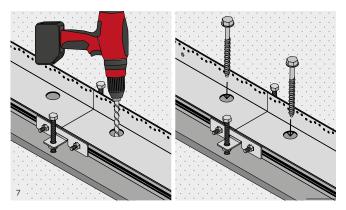


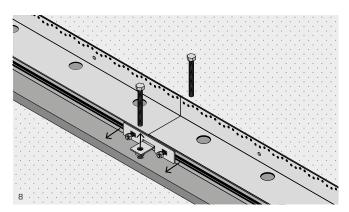

Preliminary positioning of the profiles on the laying surface using the templates and cutting the elements to size, if necessary.

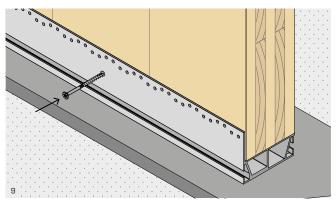

Definitive planimetric drawing with verification of lengths and diagonals.

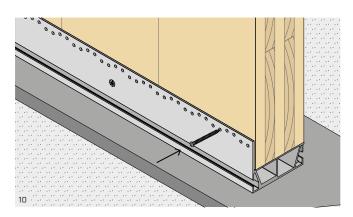

Fine adjustment with JIG START templates of the total length of the wall, compensating the tolerances of the profiles cut to size.


Longitudinal levelling of ALU START rods.

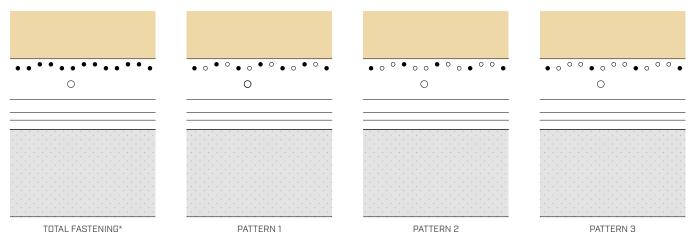

Lateral levelling of the rods.


Construction of formwork with timber battens.


Creation of the grout between the profile and the concrete support.


Insert the concrete anchors following the anchor installation instructions.

Removal of JIG START templates, which can be reused.

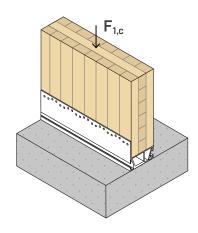

Positioning of the walls using Ø6 or Ø8 screws to bring the panel closer to the aluminium profile.

Profiles fastening with nails or screws.

PARTIAL FASTENING PATTERNS

It is possible to apply partial nailing patterns according to the design and installation requirements of the walls.

 * This pattern is not suitable for solid timber/glulam in the presence of shear loads $F_{2/3}$.


nattorn	fastening holes Ø5					
pattern	type	Ø x L	n _v			
		[mm]	[pcs/m]			
total			71			
pattern 1	LBA	Ø4 x 60	35			
pattern 2	LBS	Ø5 x 50	23			
pattern 3			17			

STRUCTURAL VALUES | TIMBER-TO-CONCRETE | F_{1,c}

It is possible to cut the profiles according to the design requirements; profiles with length less than 600 mm are to be considered for compressive strength only.

STRENGTH ON ALUMINIUM SIDE

			ALUM	INIUM
configuration	reference width	Yalu	R _{1,c,k}	ρ _{1,c,Rk}
	[mm]		[kN/m]	[MPa]
ALUSTART35	-		88,8	2,5
ALUSTART80	80		504,2	6,3
ALUSTART100	100		630,2	6,3
ALUSTART120	120		961,1	8,0
ALUSTART100 + ALUSTART35	135		719,0	$6,3^{(1)}+2,5^{(2)}$
ALUSTART120 + ALUSTART35	155	Ум1	1049,9	$8,0^{(1)} + 2,5^{(2)}$
ALUSTART175	175		1540,6	8,8
ALUSTART120 + 2x ALUSTART35	190		1138,7	8,0 ⁽¹⁾ + 2,5 ⁽²⁾
ALUSTART175 + ALUSTART35	210		1629,4	$8,8^{(1)} + 2,5^{(2)}$
ALUSTART175 + 2x ALUSTART35	245		1718,2	$8,8^{(1)} + 2,5^{(2)}$

For walls of different widths to the reference width, the compression strength of the aluminium profile can be calculated by multiplying the parameter $\rho_{1,c,Rk}$ by the actual width of the wall.

For example, for a wall thickness of 140 mm, the ALUSTART100 profile coupled with ALUSTART35 will be used. Accordingly, $R_{1,C,k}$ is calculated as follows:

 $R_{1,c,k} = 6.30 \cdot 100 + 2.54 \cdot 35 = 719 \text{ kN/m}$

The compression strength of the timber wall should be calculated by the designer according to EN 1995:2014.

STRUCTURAL VALUES | TIMBER-TO-CONCRETE | F_{1,t}

STRENGTH ON TIMBER-TO-ALUMINIUM SIDE

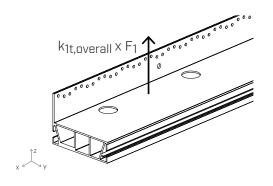
		CLT	C/GL	ALUM	INIUM	CONCRETE		
profile	pattern	R _{1,t k}	timber	R _{1,t}	k alu	k _{t, overall}	K _{1,t ser}	
		[kN	/m]	[kN/m]	Yalu		[N/mm · 1/m]	
	total	130,0	108,0					
ALUSTART80	pattern 1	64,5	53,0			1.00		F _{1,t}
ALUSTART80	pattern 2	42,0	36,5		У М1	1,88		
	pattern 3	31,0	26,0					
	total	130,0	108,0			1,62		
ALUSTART100	pattern 1	64,5	53,0				- 7200	
ALUSTARTIUU	pattern 2	42,0	35,0					
	pattern 3	31,0	26,0	102				
	total	130,0	108,0	102				
ALUSTART120	pattern 1	64,5	53,0					
ALUSTARTIZU	pattern 2	42,0	35,0			1,44		
	pattern 3	31,0	26,0					
ALUSTART175	total	130,0	108,0					
	pattern 1	64,5	53,0			1,23		
	pattern 2	42,0	35,0					
	pattern 3	31,0	26,0					

[•] C/GL: solid timber or glulam.

⁽¹⁾ Value referred to the main profile.

⁽²⁾ Value referred to ALUSTART35 extension.

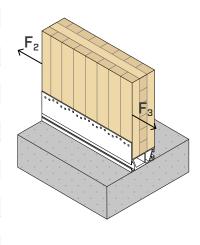
The installation of the ALUSTART35 extension, or the presence of a grout layer up to 30 mm with minimum class M10, do not affect the values in the table.


				total fastening 5 anchors/m	partial fastening 2,5 anchors/m	
profile	configuration on concrete	type Ø x L		R _{1,t d concrete}		
	on concrete		[mm]	[kN		
		VIN-FIX 5.8/8.8	M12 x 140	48,6	24,3	
		HYB-FIX 8.8	M12 x 140	86,5	43,3	
	uncracked	SKR	12 x 90	28,1	14,1	
		AB1	M12 x 100	49,2	24,6	
ALUSTART80		VIN-FIX 5.8/8.8	M12 x 195	38,9	19,5	
		HYB-FIX 8.8	M12 x 195	70,2	35,1	
	cracked	SKR	12 x 90	15,2	7,6	
		AB1	M12 x 100	31,5	15,7	
	seismic	EPO-FIX 8.8	M12 x 195	42,4	21,2	
		VIN-FIX 5.8/8.8	M12 x 140	56,4	28,2	
		HYB-FIX 8.8	M12 x 120	100,4	50,2	
	uncracked	SKR	12 x 90	32,6	16,3	
		AB1	M12 x 100	57,0	28,5	
ALUSTART100	cracked	VIN-FIX 5.8/8.8	M12 x 195	45,2	22,6	
		HYB-FIX 8.8	M12 x 195	81,5	40,7	
		SKR	12 x 90	17,7	8,8	
		AB1	M12 x 100	36,5	18,3	
	seismic	EPO-FIX 8.8	M12 x 195	49,2	24,6	
		VIN-FIX 5.8/8.8	M12 x 140	63,5	31,7	
		HYB-FIX 8.8	M12 x 120	113,0	56,5	
	uncracked	SKR	12 x 90	36,7	18,3	
		AB1	M12 x 100	64,2	32,1	
ALUSTART120		VIN-FIX 5.8/8.8	M12 x 195	50,8	25,4	
	cracked	HYB-FIX 8.8	M12 x 195	91,7	45,8	
	Cracked	SKR	12 x 90	19,9	10,0	
		AB1	M12 x 100	41,1	20,5	
	seismic	EPO-FIX 8.8	M12 x 195	55,3	27,7	
		VIN-FIX 5.8/8.8	M12 x 140	74,3	37,2	
	uncracked	HYB-FIX 8.8	M12 x 120	132,3	66,1	
	uncracked	SKR	12 x 90	43,0	21,5	
		AB1	M12 x 100	75,1	37,6	
ALUSTART175		VIN-FIX 5.8/8.8	M12 x 195	59,5	29,7	
	cracked	HYB-FIX 8.8	M12 x 195	107,3	53,7	
	CIACREU	SKR	12 x 90	23,3	11,7	
		AB1	M12 x 100	48,1	24,1	
	seismic	EPO-FIX 8.8	M12 x 195	64,8	32,4	

■ ANCHORS VERIFICATION FOR STRESS LOADING F_{1,t}

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the tabulated geometric parameters (k_t).

The anchor group must be verified for:


 $N_{Ed,z,bolts} = F_{1,t} \times k_{1,t,overall}$

■ STRUCTURAL VALUES | TIMBER-TO-CONCRETE | F_{2/3}

STRENGTH ON TIMBER-TO-ALUMINIUM SIDE

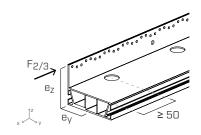
		CLT	C/GL	CONC	RETE	
profile	pattern	R _{2/3,k}	timber	e _y	e _z	K _{2/3,ser}
		[kN	/m]	[mm]	[mm]	[N/mm · 1/m]
	total	112,4	-			12000
ALUSTART80	pattern 1	55,4	44,7			8000
ALUSTARTOU	pattern 2	36,4	29,4			4000
	pattern 3	26,9	21,7			3000
	total	112,4	-	29,5 80	90.5	12000
ALUSTART100	pattern 1	55,4	44,7			8000
ALOSTARTIOO	pattern 2	36,4	29,4			4000
	pattern 3	26,9	21,7			3000
	total	105,9	-		80,3	12000
ALUSTART120	pattern 1	52,2	42,1			8000
ALOSTARTIZO	pattern 2	34,3	27,7			4000
	pattern 3	25,3	20,4			3000
	total	90,2	-			12000
	pattern 1	44,4	35,8			8000
ALUSTART175	pattern 2	29,2	23,6			4000
	pattern 3	21,6	17,4			3000

CONCRETE STRENGTH

			total fastening 5 anchors/m	partial fastening 2,5 anchors/m			
	fastening holes Ø12						
configuration	type	ØxL	K _{2/3,d}	R _{2/3,d concrete}			
on concrete		[mm]	[kN/m]				
uncracked	VIN-FIX 5.8	M12 x 140	94,0	47,0			
	VIN-FIX 8.8	M12 x 140	129,0	64,5			
	SKR	12 x 90	83,0	41,5			
	AB1	M12 x 100	94,6	50,3			
cracked	VIN-FIX 5.8	M12 x 195	94,0	47,0			
	VIN-FIX 8.8	M12 x 195	106,0	53			
	HYB-FIX 8.8	M12 x 195	129,0	64,5			
	SKR	12 x 90	54,2	27,1			
	AB1	M12 x 100	94,6	50,5			
seismic	EPO-FIX 8.8	M12 x 195	51,2	25,6			

ANCHORS VERIFICATION FOR STRESS LOADING F_{2/3}

Fastening to concrete using alternative anchors must be verified on the basis of the load acting on the anchors, which depend on the fastening configuration. In order to consider an anchor as a reagent it is necessary that the distance of the anchor from the profile edge is at least 50 mm.


The anchor group must be verified for:

 $V_{Ed,x,bolts} = F_{2/3}$

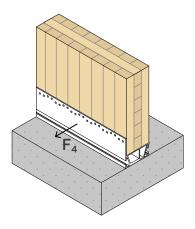
 $M_{Ed,z,bolts} = F_{2/3,d} \times e_y$

 $M_{Ed,x,bolts} = F_{2/3,d} \times e_z$

In which $F_{2/3,d}$ represents the shear stress acting on the ALU START connector. The check is satisfied if the design shear strength of the anchor group is greater than the design stress: $R_{2/3,d}$ concrete $\geq F_{2/3,d}$.

[•] C/GL: solid timber or glulam

The installation of the ALUSTART35 extension, or the presence of a grout layer up to 30 mm with minimum class M10, do not affect the values in the table.


■ STRUCTURAL VALUES | TIMBER-TO-CONCRETE | F₄

STRENGTH ON TIMBER-TO-ALUMINIUM SIDE

	ALUM	INIUM	CONCRETE	
profile	R _{4,k alu} [kN/m]	Yalu	k _{4t, overall}	K _{4,ser} [N/mm · 1/m]
ALUSTART*	100	YM1	1,84	27000

^{*} valid for all profiles.

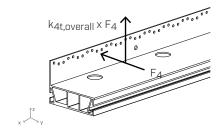
The installation of the ALUSTART35 extension, or the presence of a grout layer up to 30 mm with minimum class M10, do not affect the values in the table.

SHEAR STRENGTH ON CONCRETE SIDE

			total fastening 5 anchors/m	partial fastening 2,5 anchors/m		
	fastening holes Ø12					
configuration	type	Ø x L	R _{4,d c}	oncrete		
on concrete		[mm]	[kN/m]			
	VIN-FIX 5.8	M12 x 140	48,6	24,3		
uncracked	HYB-FIX 8.8	M12 x 120	83,3	41,7		
ипстаскей	SKR	12 x 90	28,3	14,2		
	AB1	M12 x 100	48,5	24,3		
	VIN-FIX 5.8	M12 x 195	38,9	19,5		
	HYB-FIX 8.8	M12 x 195	67,7	33,8		
cracked	SKR	12 x 90	17,5	8,8		
	AB1	M12 x 100	31,7	15,8		
seismic	EPO-FIX 8.8	M12 x 195	33,1	16,5		

ANCHORS VERIFICATION FOR STRESS LOADING F₄

Fastening to concrete using alternative anchors must be verified on the basis of the load acting on the anchors, which depend on the fastening configuration.


The anchor group must be verified for:

 $V_{Ed,y,bolts} = F_{4,Ed}$

 $N_{Ed,z,bolts} = F_{4,Ed} \times k_{4t,overall}$

In which $\mathrm{F}_{\mathrm{4,d}}$ represents the shear stress acting on the ALU START connector.

The check is satisfied if the design shear strength of the anchor group is greater than the design stress: $R_{4,d} \ge F_{4,d}$.

STRUCTURAL VALUES | TIMBER-TO-CONCRETE | F₅

STRENGTH ON TIMBER-TO-ALUMINIUM SIDE

		CLT	C/GL	CONCRETE				
profile	pattern	R _{5,k timber}		k _{5t,overall}	K _{5,ser}			
		[kN	/m]		[N/mm · 1/m]			
	total	25,8	23,9					
ALUSTART80	pattern 1	25,8	23,9	4.07				
ALUSTARTOU	pattern 2	18,9	23,9	1,83				
	pattern 3	13,5	19,6					
	total	25,8	23,9	1.57				
ALUSTART100	pattern 1	25,8	23,9		5500			
ALOSIAKIIOO	pattern 2	18,9	23,9	1,53				
	pattern 3	13,5	19,6			F ₅		
	total	25,8	23,9	1,39				
ALUSTART120	pattern 1	25,8	23,9					
ALOSTARTIZO	pattern 2	18,9	23,9	1,39				
	pattern 3	13,5	19,6					
ALUSTART175	total	25,8	23,9	1 20				
	pattern 1	25,8	23,9					
	pattern 2	18,9	23,9	1,28				
	pattern 3	13,5	19,6					

[•] C/GL: solid timber or glulam.

The installation of the ALUSTART35 extension, or the presence of a grout layer up to 30 mm with minimum class M10, do not affect the values in the table.

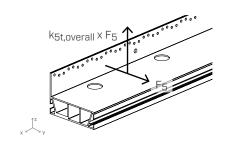
CONCRETESTRENGTH

			total fastening 5 anchors/m	partial fastening 2,5 anchors/m			
	fastening holes Ø12		_				
configuration on concrete	type	ØxL	R _{5,d concrete}				
		[mm]	[kN/m]				
uncracked	VIN-FIX 5.8	M12 x 140	48,6	24,3			
	HYB-FIX 8.8	M12 x 120	83,3	41,7			
	SKR	12 x 90	28,3	14,2			
	AB1	M12 x 100	48,5	24,3			
cracked	VIN-FIX 5.8	M12 x 195	38,9	19,5			
	HYB-FIX 8.8	M12 x 195	67,7	33,8			
	SKR	12 x 90	17,5	8,8			
	AB1	M12 x 100	31,7	15,8			
seismic	EPO-FIX 8.8	M12 x 195	33,1	16,5			

^{*} $k_{5t,overall}$ was assumed to be 1,83 for safety reasons.

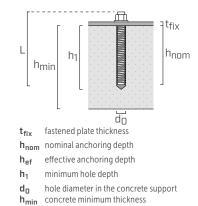
ANCHORS VERIFICATION FOR STRESS LOADING F₅

Fastening to concrete using alternative anchors must be verified on the basis of the load acting on the anchors, which depend on the fastening configuration.


The anchor group must be verified for:

 $V_{Ed,y,bolts} = F_{5,Ed}$

 $N_{Ed,z,bolts} = F_{5,Ed} x k_{5t,overall}$


In which $F_{5,d}$ represents the shear stress acting on the ALU START connector.

The check is satisfied if the design shear strength of the anchor group is greater than the design stress: $R_{5,d} \ge F_{5,d}$.

ANCHORS INSTALLATION PARAMETERS

profile	anchor type		t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}	
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	VIN-FIX 5.8	M12 x 140	7	115	115	120	14		
	VIN-FIX 8.8	M12 x 140	7	115	115	120	14		
	HYB-FIX 8.8	M12 x 140	7	115	115	120	14		
	SKR	12 x 90	7	64	83	105	10		
ALU START*	AB1	M12 x 100	7	70	80	85	12	200	
	VIN-FIX 5.8	M12 x 195	7	165	165	170	14		
	VIN-FIX 8.8	M12 x 195	7	165	165	170	14		
	HYB-FIX 8.8	M12 x 195	7	165	165	170	14		
	EPO-FIX 8.8	M12 x 195	7	170	170	175	14		

Precut INA threaded rod, with nut and washer: see page 562. MGS threaded rod class 8.8 to be cut to size: see page 174.

■ ALUSTART | COMBINED STRESSES

With regard to timber and aluminium, it is possible to combine the effect of the different actions through the following expressions:

$$\left(\frac{F_{1,t,Ed}}{R_{1,t,d}}\right)^2 + \left(\frac{F_{2/3,Ed}}{R_{2/3,d}}\right)^2 + \left(\frac{F_{4,Ed}}{R_{4,d}}\right)^2 \le 1$$

$$\left(\frac{F_{1,t,Ed}}{R_{1,t,d}}\right)^2 + \left(\frac{F_{2/3,Ed}}{F_{2/3,d}}\right)^2 + \left(\frac{F_{5,Ed}}{R_{5,d}}\right)^2 \le 1$$

Regarding checks on the anchor side, the results of the loads must be applied to the group of anchors, following the indications of the diagrams relating to each load direction.

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-20/0835.
- The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments.
- Design values can be obtained from characteristic values as follows:

$$R_{1,c,d} = \frac{R_{1,c,k}}{\gamma_{alu}} \cdot I$$

$$R_{1,t,d} = min \begin{cases} \frac{R_{1,t,k \; timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{1,t,k \; alu}}{\gamma_{alu}} \cdot J \\ R_{1,t,d \; concrete} \cdot J^{*} \end{cases}$$

$$R_{2/3,d} = min \begin{cases} \frac{R_{2/3,k \text{ timber}} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{2/3,k \text{ alu}}}{\gamma_{alu}} \cdot I \\ R_{2/3,d \text{ concrete}} \cdot I^* \end{cases}$$

$$R_{4,d} = min \quad \begin{cases} \frac{R_{4,k \text{ alu}}}{\gamma_{alu}} \cdot I \\ R_{4,d \text{ concrete}} \cdot I^* \end{cases}$$

$$R_{5,d} = min \qquad \begin{cases} \frac{R_{5,k \text{ timber}} \cdot k_{mod}}{\gamma_M} \cdot I \\ R_{5,d \text{ concrete}} \cdot I^* \end{cases}$$

The dimension I is the length of the profile used, to be used in metres in the formulas. The minimum length is 600 mm, except in the case where the profile is subject to compression.

The dimension l^{\star} is the length of the profile used approximated to the lower multiple of 200 mm, to be used in metres in the formulas. The minimum length is 600 mm.

- The calculation process used a timber characteristic density of $\rho_k = 350 \text{ kg/m}^3$ for timber and $\rho_k = 385 \text{ kg/m}^3$ for CLT of timber C24. A C25/30 class concrete with a thin reinforcement and minimum thickness indicated in the table has been considered.
- Dimensioning and verification of timber and concrete elements must be carried out separately.
- The strength values on the concrete side are valid for the calculation hypothesis defined in the respective tables; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge, lower number of anchors/m), the anchors-to-concrete can be verified using MyProject calculation software according to the design requirements.

The anchors seismic design was carried out in performance category C2, without ductility requirements on anchors (option a2) elastic design according to EN 1992:2018, with $\alpha_{sus}\!=\!0,\!6.$ For chemical anchors it is assumed that the annular space between the anchor and the plate hole is filled ($\alpha_{gap}=1$).

- The product ETAs for the anchors used in the concrete-side strength calculation are indicated below:
 - VIN-FIX chemical anchor according to ETA-20/0363;
 - HYB-FIX chemical anchor according to ETA-20/1285;
 - EPO-FIX chemical anchor according to ETA-23/0419;
 - SKR screw-in anchor according to ETA-24/0024;
 - AB1 mechanical anchor according to ETA-17/0481 (M12).

INTELLECTUAL PROPERTY

 An ALU START model is protected by the Registered Community Design RCD 008254353-0002.

^{*} The values in the table are valid for all ALU START profiles.