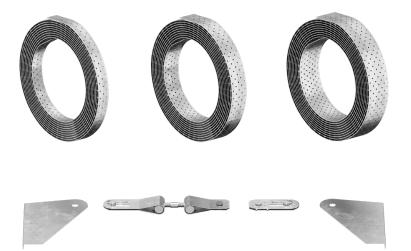
# **CE**

### PERFORATED STRAP

#### TWO THICKNESSES

Simple and effective system to achieve floor bracing. It is available in thicknesses of 1,5 and 3,0 mm.

#### SPECIAL STEEL


Made with S350GD high strength steel. The 1,5 mm thick version offers extreme performance to tensile forces with minimal thickness.

#### TENSIONING

The CLIPFIX60 accessory allows the strap to be tensioned and anchored firmly at the ends. By using a GEKO or SKORPIO panel pullers together with the CLAMP1 accessory, the perforated strap can be tensioned.



USA, Canada and more design values available online.





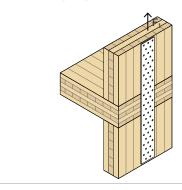
#### SERVICE CLASS



#### MATERIAL



LBB 1, 5 mm: S350GD + Z275 carbon steel




**LBB 3,0 mm**: S250GD + Z275 carbon steel

#### THICKNESS [mm]

1,5 mm | 3,0 mm

#### **EXTERNAL LOADS**





### FIELD OF USE

Economical solution for tensile joints with small to medium stress.

Rolls of 25 or 50 m allow for very long connections.

Timber-to-timber configuration.

### Can be applied to:

- solid timber and glulam
- timber frame
- CLT and LVL panels

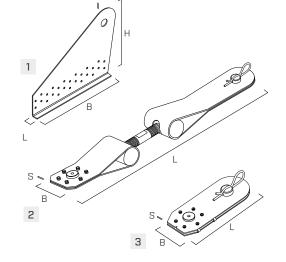
### ■ CODES AND DIMENSIONS

### LBB 1,5 mm

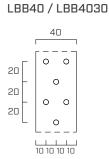
| CODE  | В    | Н   | s    | В      | Н       | s    | n Ø5<br>n Ø.20    |   | pcs |
|-------|------|-----|------|--------|---------|------|-------------------|---|-----|
|       | [mm] | [m] | [mm] | [in]   | [in]    | [in] | [pcs]             |   |     |
| LBB40 | 40   | 50  | 1,5  | 1 9/16 | 1 15/16 | 0.06 | 75/m<br>23 / ft.  | • | 1   |
| LBB60 | 60   | 50  | 1,5  | 2 3/8  | 1 15/16 | 0.06 | 125/m<br>38 / ft. | • | 1   |
| LBB80 | 80   | 25  | 1,5  | 3 1/8  | 1 15/16 | 0.06 | 175/m<br>53 / ft. | • | 1   |

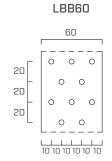


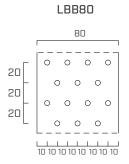
#### LBB 3,0 mm


| CODE    | В    | Н   | s    | В      | Н       | S    | n Ø5<br>n Ø.20   |   | pcs |
|---------|------|-----|------|--------|---------|------|------------------|---|-----|
|         | [mm] | [m] | [mm] | [in]   | [in]    | [in] | [pcs]            |   |     |
| LBB4030 | 40   | 50  | 3    | 1 9/16 | 1 15/16 | 0.12 | 75/m<br>23 / ft. | • | 1   |




### CLIPFIX


| CODE      | LBB type      | LBB width                             | pcs |
|-----------|---------------|---------------------------------------|-----|
| CLIPFIX60 | LBB40   LBB60 | 40 mm   60 mm<br>1 9/16 in   2 3/8 in | 1   |


| SE | T COMPRISED OF:    | <b>B</b><br>[mm] | <b>H</b><br>[mm] | <b>L</b><br>[mm]<br><i>[in]</i> | <b>s</b><br>[mm] | n Ø5<br>n Ø.20<br>pcs | pcs  |
|----|--------------------|------------------|------------------|---------------------------------|------------------|-----------------------|------|
| 1  | Terminal plate     | 289<br>11 3/8    | 198<br>7 13/16   | 15<br>9/16                      | 2<br>0.08        | 26                    | 4(1) |
| 2  | Clip-Fix tensioner | 60<br>2 3/8      | -                | 300-350<br>11 3/4 - 13 3/4      | 2<br>0.08        | 7                     | 2    |
| 3  | Clip-Fix Terminal  | 60<br>2 3/8      | -                | 157<br>6 3/16                   | 2<br>0.08        | 7                     | 2    |



### **■** GEOMETRY

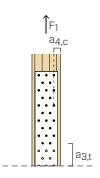






### **FASTENERS**

| type    | description             |                        | d    | support | page |
|---------|-------------------------|------------------------|------|---------|------|
|         |                         |                        | [mm] |         |      |
| LBA     | high bond nail          | <u> </u>               | 4    | 27777   | 570  |
| LBS     | round head screw        | (D <b>attititititi</b> | 5    |         | 571  |
| LBS EVO | C4 EVO round head screw |                        | 5    | 2)))))  | 571  |

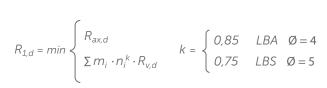

<sup>(1)</sup> The set includes two right-hand and two left-hand plates.

The Clip-Fix tensioners and terminals are compatible for installation of the LBB40 and LBB60 perforated straps.

### INSTALLATION

#### MINIMUM DISTANCES

| TIMBER minimum distances          |                              | nails<br>LBA Ø4 | screws<br>LBS Ø5 |
|-----------------------------------|------------------------------|-----------------|------------------|
| Lateral connector - unloaded edge | <b>a</b> <sub>4,c</sub> [mm] | ≥ 20            | ≥ 25             |
| Connector - loaded end            | <b>a</b> <sub>3,t</sub> [mm] | ≥ 60            | ≥ 75             |




### ■ STRUCTURAL VALUES | TIMBER-TO-TIMBER | F<sub>1</sub>

#### STRENGTH OF THE SYSTEM

The tensile strength of the R1,d system is the minimum between the Rax,d plate side tensile strength and the shear resistance of the connectors used for fastening  $n_{tot}$   $R_{v,d}$ .

If the connectors are placed in several consecutive rows and the load direction is parallel to the grain, the following sizing criteria must be applied.





Where  $m_i$  is the number of rows of connectors parallel to the grain and  $n_i$  is the number of connectors arranged in the same row.

#### TAPE - TENSILE STRENGTH

| type       | В    | s    | net<br>area holes | R <sub>ax,k</sub> |
|------------|------|------|-------------------|-------------------|
|            | [mm] | [mm] | [pcs]             | [kN]              |
|            | 40   | 1,5  | 2                 | 17,0              |
| LBB 1,5 mm | 60   | 1,5  | 3                 | 25,5              |
|            | 80   | 1,5  | 4                 | 34,0              |
| LBB 3,0 mm | 40   | 3,0  | 2                 | 26,7              |

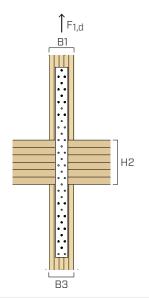
#### CONNECTORS SHEAR RESISTANCE

For the strength  $R_{v,k}$  of the LBA Anker nails and of the LBS screws, refer to the "TIMBER SCREWS AND DECK FASTENING" catalogue.

#### **GENERAL PRINCIPLES**

- Characteristic values according to EN 1995:2014 and EN 1993:2014.
- The plate design strength values can be obtained as follows:

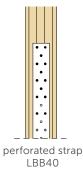
$$R_{ax,d} = \frac{R_{ax,k}}{\gamma_{M2}}$$

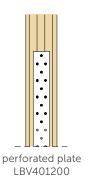

• The connectors design strength values can be obtained as follows:

$$R_{v,d} = \frac{R_{v,k} \cdot k_{mod}}{V_{v,k}}$$

The coefficients  $k_{\rm mod},\,\gamma_{\rm M}$  and  $\gamma_{\rm M2}$  should be taken according to the current regulations used for the calculation.

- A timber density of  $\rho_k = 350 \text{ kg/m}^3$  was considered for the calculation process.
- Dimensioning and verification of the timber elements must be carried out separately.
- It is recommended to place the connectors symmetrically with respect to the load direction.


## ■ CALCULATION EXAMPLE | DETERMINING RESISTANCE R<sub>1d</sub>




| Project data     |                  |         |
|------------------|------------------|---------|
| Strength         | F <sub>1,d</sub> | 12,0 kN |
| Service class    |                  | 2       |
| Load duration    |                  | short   |
| Solid timber C24 |                  |         |
| Element 1        | B1               | 80 mm   |
| Element 2        | H2               | 140 mm  |
| Element 3        | В3               | 80 mm   |

| perforated strap LBB40           | perforated plate LBV401200 <sup>(2)</sup> |
|----------------------------------|-------------------------------------------|
| B = 40 mm                        | B = 40 mm                                 |
| s = 1,5 mm                       | s = 2 mm                                  |
|                                  | H = 600 mm                                |
|                                  |                                           |
| Anker nail LBA440 <sup>(1)</sup> | Anker nail LBA440 <sup>(1)</sup>          |
| $d_1 = 4.0 \text{ mm}$           | $d_1 = 4.0 \text{ mm}$                    |
| L = 40 mm                        | L = 40 mm                                 |

#### EVALUATION OF THE STRENGTH OF THE SYSTEM





#### TAPE/PLATE - TENSILE STRENGTH

| perforated strap LBB40       |   |      |    |  |  |
|------------------------------|---|------|----|--|--|
| R <sub>ax,k</sub>            | = | 17,0 | kN |  |  |
| <b>У</b> м2                  | = | 1,25 |    |  |  |
| R <sub>ax,d</sub> = 13,60 kN |   |      |    |  |  |

| perforated plate LBV401200 <sup>(2)</sup> |   |       |    |  |  |
|-------------------------------------------|---|-------|----|--|--|
| R <sub>ax,k</sub>                         | = | 17,8  | kN |  |  |
| <b>Y</b> M2                               | = | 1,25  |    |  |  |
| R <sub>ax,d</sub>                         | = | 14,24 | kN |  |  |

#### **CONNECTOR - SHEAR STRENGTH**

| perforated strap LBB40                            |   |       |       |  |  |  |
|---------------------------------------------------|---|-------|-------|--|--|--|
| $R_{v,k}$                                         | = | 2,19  | kN    |  |  |  |
| n <sub>tot</sub>                                  | = | 13    | pcs   |  |  |  |
| n <sub>1</sub>                                    | = | 5     | pcs   |  |  |  |
| m <sub>1</sub>                                    | = | 2     | lines |  |  |  |
| n <sub>2</sub>                                    | = | 3     | pcs   |  |  |  |
| m <sub>2</sub>                                    | = | 1     | lines |  |  |  |
| $k_{LBA}$                                         | = | 0,85  |       |  |  |  |
| k <sub>mod</sub>                                  | = | 0,90  |       |  |  |  |
| Υм                                                | = | 1,30  |       |  |  |  |
| $R_{v,d}$                                         | = | 1,52  | kN    |  |  |  |
| $\textstyle \sum m_i \cdot n_i{}^k \cdot R_{v,d}$ | = | 15,77 | kN    |  |  |  |

| perforated plate LBV401200 <sup>(2)</sup>         |   |       |       |
|---------------------------------------------------|---|-------|-------|
| $R_{v,k}$                                         | = | 2,17  | kN    |
| $n_{tot}$                                         | = | 13    | pcs   |
| $n_1$                                             | = | 4     | pcs   |
| m <sub>1</sub>                                    | = | 2     | lines |
| n <sub>2</sub>                                    | = | 5     | pcs   |
| m <sub>2</sub>                                    | = | 1     | lines |
| $k_{LBA}$                                         | = | 0,85  |       |
| k <sub>mod</sub>                                  | = | 0,90  |       |
| Υм                                                | = | 1,30  |       |
| $R_{v,d}$                                         | = | 1,50  | kN    |
| $\textstyle \sum m_i \cdot n_i{}^k \cdot R_{v,d}$ | = | 15,66 | kN    |

#### STRENGTH OF THE SYSTEM

$$R_{1,d} = min \begin{cases} R_{ax,d} \\ \sum m_i \cdot n_i^k \cdot R_{v,d} \end{cases}$$

| $\sum m_i \cdot n_i^{\kappa} \cdot R_{\nu,d}$ |
|-----------------------------------------------|
|-----------------------------------------------|

VERIFICATION  $R_{1,d} \geq F_{1,d}$ 

### perforated strap LBB40

 $R_{1,d}$ = 13,60 kN

13,6 kN ≥ 12,0 kN

#### verification passed

### perforated plate LBV401200<sup>(2)</sup>

 $R_{1,d}$ 14,24 kN

14,2 12,0 kN

verification passed

- $^{\left(1\right)}\,$  In the calculation example LBA Anker nails are used. The fastening can also be made with LBS screws (page 571).
- $^{\left(2\right)}$  Plate LBV401200 is considered cut to length 600 mm.

### **GENERAL PRINCIPLES**

- To optimize the connection system, it is recommended to use a number of connectors which can provide a shear capacity that does not exceed the tensile strength of the tape/plate.
- It is recommended to place the connectors symmetrically with respect to the load direction.